Thursday, 7 September 2017

Dubbel Glidande Medelvärde Prognoser


Flyttande medelprognos Inledning. Som du kan gissa vi tittar på några av de mest primitiva tillvägagångssätten för prognoser. Men förhoppningsvis är dessa åtminstone en värdefull introduktion till några av de datorproblem som är relaterade till att implementera prognoser i kalkylblad. I den här venen fortsätter vi med att börja i början och börja arbeta med Moving Average prognoser. Flyttande medelprognoser. Alla är bekanta med att flytta genomsnittliga prognoser oavsett om de tror att de är. Alla studenter gör dem hela tiden. Tänk på dina testresultat i en kurs där du ska ha fyra tester under semestern. Låt oss anta att du fick en 85 på ditt första test. Vad skulle du förutse för ditt andra testresultat Vad tycker du att din lärare skulle förutsäga för nästa testresultat Vad tycker du att dina vänner kan förutsäga för nästa testresultat Vad tror du att dina föräldrar kan förutsäga för nästa testresultat Oavsett om alla blabbing du kan göra för dina vänner och föräldrar, de och din lärare förväntas mycket sannolikt att du får något i området 85 du bara har. Nåväl, nu kan vi anta att trots din egen marknadsföring till dina vänner överskattar du dig själv och räknar att du kan studera mindre för det andra testet och så får du en 73. Nu är vad alla berörda och oroade kommer att Förutse att du kommer att få ditt tredje test Det finns två väldigt troliga metoder för att utveckla en uppskattning oavsett om de kommer att dela den med dig. De kan säga till sig själva: "Den här killen sprider alltid rök om hans smarts. Hes kommer att få ytterligare 73 om han är lycklig. Kanske kommer föräldrarna att försöka vara mer stödjande och säga, Quote, hittills har du fått en 85 och en 73, så kanske du ska räkna med att få en (85 73) 2 79. Jag vet inte, kanske om du gjorde mindre fester och werent vaggar vassan överallt och om du började göra mycket mer studerar kan du få en högre poäng. quot Båda dessa uppskattningar flyttade faktiskt genomsnittliga prognoser. Den första använder endast din senaste poäng för att förutse din framtida prestanda. Detta kallas en glidande genomsnittlig prognos med en period av data. Den andra är också en rörlig genomsnittlig prognos men använder två dataperioder. Låt oss anta att alla dessa människor bråkar på ditt stora sinne, har gett dig en puss och du bestämmer dig för att göra det bra på det tredje testet av dina egna skäl och att lägga ett högre poäng framför din quotalliesquot. Du tar testet och din poäng är faktiskt en 89 Alla, inklusive dig själv, är imponerade. Så nu har du det sista testet av terminen som kommer upp och som vanligt känner du behovet av att ge alla till att göra sina förutsägelser om hur du ska göra på det sista testet. Jo, förhoppningsvis ser du mönstret. Nu kan du förhoppningsvis se mönstret. Vilken tror du är den mest exakta visselpipan medan vi arbetar. Nu återvänder vi till vårt nya rengöringsföretag som startas av din främmande halvsyster, kallad Whistle While We Work. Du har några tidigare försäljningsdata som representeras av följande avsnitt från ett kalkylblad. Vi presenterar först data för en treårs glidande medelprognos. Posten för cell C6 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C7 till och med C11. Lägg märke till hur genomsnittet rör sig över de senaste historiska data men använder exakt de tre senaste perioderna som finns tillgängliga för varje förutsägelse. Du bör också märka att vi inte verkligen behöver göra förutsägelser för de senaste perioderna för att utveckla vår senaste förutsägelse. Detta är definitivt annorlunda än exponentiell utjämningsmodell. Ive inkluderade quotpast predictionsquot eftersom vi kommer att använda dem på nästa webbsida för att mäta förutsägelse validitet. Nu vill jag presentera de analoga resultaten för en tvåårs glidande medelprognos. Posten för cell C5 ska vara Nu kan du kopiera den här cellformeln ner till de andra cellerna C6 till och med C11. Lägg märke till hur nu endast de två senaste bitarna av historiska data används för varje förutsägelse. Återigen har jag inkluderat quotpast predictionsquot för illustrativa ändamål och för senare användning i prognosvalidering. Några andra saker som är viktiga att märka. För en m-period som rör genomsnittlig prognos används endast de senaste datavärdena för att göra förutsägelsen. Inget annat är nödvändigt. För en m-period rörande genomsnittlig prognos, när du gör quotpast predictionsquot, märka att den första förutsägelsen sker i period m 1. Båda dessa problem kommer att vara väldigt signifikanta när vi utvecklar vår kod. Utveckla den rörliga genomsnittsfunktionen. Nu behöver vi utveckla koden för den glidande medelprognosen som kan användas mer flexibelt. Koden följer. Observera att inmatningarna är för antalet perioder du vill använda i prognosen och en rad historiska värden. Du kan lagra den i vilken arbetsbok du vill ha. Funktion MovingAverage (Historical, NumberOfPeriods) Som enstaka deklarering och initialisering av variabler Dim-objekt som variant Dim-räknare som integer Dim-ackumulering som enstaka Dim HistoricalSize som heltal Initialiserande variabler Counter 1 ackumulering 0 Bestämning av storleken på Historisk matris Historisk storlek Historical. Count för Counter 1 till NumberOfPeriods Ackumulera lämpligt antal senast tidigare observerade värden ackumulering ackumulering historisk (historicalSize - numberOfPeriods Counter) MovingAverage Accumulation NumberOfPeriods Koden förklaras i klassen. Du vill placera funktionen på kalkylbladet så att resultatet av beräkningen visas där den ska gälla följande. En tidsserie är en följd av observationer av en periodisk slumpmässig variabel. Exempel är den månatliga efterfrågan på en produkt, den årliga nybörjaren inskrivning i en avdelning på universitetet och de dagliga flödena i en flod. Tidsserier är viktiga för verksamhetsforskning eftersom de ofta är drivkrafter för beslutsmodeller. En inventeringsmodell kräver uppskattningar av framtida krav. En kursplanering och personalmodell för en universitetsavdelning kräver uppskattningar av framtida studentinflöde och en modell för att ge varningar till befolkningen i ett flodbänk kräver uppskattningar av flodflöden för den närmaste framtiden. Tidsserieanalys ger verktyg för att välja en modell som beskriver tidsserierna och använder modellen för att prognostisera framtida händelser. Modellering av tidsserier är ett statistiskt problem eftersom observerade data används i beräkningsprocedurer för att uppskatta koefficienterna för en antagen modell. Modeller antar att observationer varierar slumpmässigt om ett underliggande medelvärde som är en funktion av tiden. På dessa sidor begränsar vi uppmärksamheten att använda historiska tidsseriedata för att uppskatta en tidsberoende modell. Metoderna är lämpliga för automatisk prognos på kort sikt av ofta använd information där de underliggande orsakerna till tidsvariation inte förändras markant i tid. I praktiken modifieras prognoserna från dessa metoder senare av mänskliga analytiker som innehåller information som inte är tillgänglig från de historiska uppgifterna. Vårt primära syfte i detta avsnitt är att presentera ekvationerna för de fyra prognosmetoderna som används i prognostillägget: glidande medelvärde, exponentiell utjämning, regression och dubbel exponentiell utjämning. Dessa kallas utjämningsmetoder. Metoder som inte beaktas inkluderar kvalitativa prognoser, multipelregression och autoregressiva metoder (ARIMA). De som är intresserade av mer omfattande täckning bör besöka webbplatsen Prognosprinciper eller läsa en av de många utmärkta böckerna om ämnet. Vi använde bokprognosen. av Makridakis, Wheelwright och McGee, John Wiley ampsons, 1983. För att använda Excel Exempels arbetsbok måste du ha prognostillägget installerat. Välj Relink-kommandot för att upprätta länkarna till tillägget. Den här sidan beskriver modellerna som används för enkla prognoser och den notation som används för analysen. Den enklaste prognostiseringsmetoden är det genomsnittliga prognosen för glidande medel. Metoden är helt enkelt medelvärden av de sista m-observationerna. Det är användbart för tidsserier med ett långsamt byte medelvärde. Denna metod tar hänsyn till hela förflutna i sin prognos, men väger ny erfarenhet tyngre än mindre nyligen. Beräkningarna är enkla eftersom endast beräkningen av föregående period och aktuella data bestämmer den nya uppskattningen. Metoden är användbar för tidsserier med ett långsamt byte medelvärde. Den glidande genomsnittliga metoden svarar inte bra på en tidsserie som ökar eller minskar med tiden. Här ingår en linjär trendperiod i modellen. Regressionsmetoden approximerar modellen genom att konstruera en linjär ekvation som ger de minsta kvadraterna passande till de senaste m-observationerna. Förberedelser genom utjämningstekniker Den här webbplatsen är en del av JavaScript E-labs lärande objekt för beslutsfattande. Övriga JavaScript i denna serie kategoriseras under olika tillämpningsområden i MENU-sektionen på den här sidan. En tidsserie är en följd av observationer som beställs i tid. Inhämtande i insamlingen av data som tagits över tiden är någon form av slumpmässig variation. Det finns metoder för att minska avbrytandet av effekten på grund av slumpmässig variation. Bredt använda tekniker är utjämning. Dessa tekniker, när de tillämpas korrekt, avslöjar tydligare de underliggande trenderna. Ange tidsserierna Row-wise i följd, från början till vänster och parametrarna, och klicka sedan på knappen Beräkna för att få fram en prognos för en period framåt. Blanka rutor ingår inte i beräkningarna men nollor är. När du matar in data för att flytta från cell till cell i datmatrisen använder du inte knappen Tab eller pilar in. Funktioner av tidsserier, som kan avslöjas genom att granska dess graf. med de prognostiserade värdena och restbeteendet, förutsatt prognosmodellering. Flyttande medelvärden: Flyttande medelvärden rankas bland de mest populära teknikerna för förbehandling av tidsserier. De används för att filtrera slumpmässigt vitt brus från data, för att göra tidsserierna mjukare eller till och med för att betona vissa informationskomponenter som ingår i tidsserierna. Exponentiell utjämning: Detta är ett mycket populärt schema för att producera en slät Time Series. Medan i rörliga medelvärden viktas de senaste observationerna, exponentiell utjämning tilldelar exponentiellt minskande vikter som observationen blir äldre. Med andra ord ges de senaste observationerna relativt större vikt vid prognosen än de äldre observationerna. Dubbel exponentiell utjämning är bättre vid hantering av trender. Trippel exponentiell utjämning är bättre vid hantering av paraboltrender. Ett exponentiellt vägat glidande medelvärde med en utjämningskonstant a. motsvarar ungefär ett enkelt rörligt medelvärde av längd (dvs period) n, där a och n är relaterade till: a 2 (n1) ORn (2-a) a. Således skulle exempelvis ett exponentiellt vägt glidmedel med en utjämningskonstant lika med 0,1 motsvara ungefär ett 19 dagars glidande medelvärde. Och ett 40-dagars enkelt rörligt medelvärde skulle motsvara ungefär ett exponentiellt vägt rörligt medelvärde med en utjämningskonstant lika med 0,04878. Håller linjär exponentiell utjämning: Antag att tidsserierna är säsongsbetonade men visar visningstendens. Holts metod beräknar både nuvarande nivå och nuvarande trend. Observera att det enkla glidande medlet är ett speciellt fall av exponentiell utjämning genom att ställa in perioden för glidande medelvärde till heltalet av (2-alfa) alfa. För de flesta företagsdata är en Alpha-parameter som är mindre än 0,40 ofta effektiv. Man kan emellertid utföra en nätverkssökning av parameternummet, med 0,1 till 0,9, med steg om 0,1. Då har den bästa alfas det minsta genomsnittliga absoluta felet (MA-fel). Hur man jämför flera utjämningsmetoder: Även om det finns numeriska indikatorer för bedömning av prognosteknikens noggrannhet, är det mest använda sättet att använda en visuell jämförelse av flera prognoser för att bedöma deras noggrannhet och välja mellan olika prognosmetoder. I detta tillvägagångssätt måste man plotta (med användning av exempelvis Excel) på samma graf de ursprungliga värdena för en tidsserievariabel och de förutspådda värdena från flera olika prognosmetoder, vilket underlättar en visuell jämförelse. Du kanske gillar att använda tidigare prognoser med utjämningstekniker JavaScript för att få de senaste prognosvärdena baserade på utjämningstekniker som endast använder en parameter. Holt - och Winters-metoderna använder sig av två respektive tre parametrar, därför är det inte en lätt uppgift att välja de optimala eller till och med nära optimala värden genom försök och fel för parametrarna. Den enda exponentiella utjämningen betonar det korta perspektivet som ställer nivån till den sista observationen och baseras på förutsättningen att det inte finns någon trend. Den linjära regressionen, som passar en minsta kvadrera linje till historiska data (eller transformerade historiska data), representerar det långa intervallet, vilket är konditionerat för den grundläggande trenden. Hålen linjär exponentiell utjämning fångar information om den senaste trenden. Parametrarna i Holts-modellen är nivåparametrar som bör minskas när datamängden är stor, och trenderparametern bör ökas om den senaste trendriktningen stöds av orsakssambandsfaktorerna. Kortsiktiga prognoser: Observera att varje JavaScript på den här sidan ger en enstegs prognos. För att få en tvåstegs prognos. Lägg helt enkelt till det prognostiserade värdet till slutet av din tidsseriedata och klicka sedan på samma Calculate-knapp. Du kan upprepa denna process några gånger för att få de korta prognoser som behövs. I praktiken ger det glidande medelvärdet en bra uppskattning av medelvärdet av tidsserierna om medelvärdet är konstant eller långsamt förändras. Vid konstant medelvärde kommer det största värdet av m att ge de bästa uppskattningarna av det underliggande genomsnittet. En längre observationsperiod kommer att medeltala effekterna av variationen. Syftet med att tillhandahålla en mindre m är att tillåta prognosen att svara på en förändring av den underliggande processen. För att illustrera föreslår vi en dataset som innehåller förändringar i underliggande medelvärden av tidsserierna. Figuren visar tidsserien som används för illustration tillsammans med den genomsnittliga efterfrågan från vilken serien genererades. Medelvärdet börjar som en konstant vid 10. Börjar vid tidpunkten 21, ökar den med en enhet i varje period tills den når värdet 20 vid tiden 30. Sedan blir det konstant igen. Uppgifterna simuleras genom att lägga till i genomsnitt ett slumpmässigt brus från en normalfördelning med nollvärde och standardavvikelse 3. Resultaten av simuleringen avrundas till närmaste heltal. Tabellen visar de simulerade observationer som används för exemplet. När vi använder bordet måste vi komma ihåg att vid varje given tidpunkt endast endast tidigare data är kända. Uppskattningarna av modellparametern, för tre olika värden på m visas tillsammans med medelvärdet av tidsserierna i figuren nedan. Figuren visar den genomsnittliga rörliga genomsnittliga beräkningen av medelvärdet vid varje tidpunkt och inte prognosen. Prognoserna skulle flytta de glidande medelkurvorna till höger av perioder. En slutsats framgår omedelbart av figuren. För alla tre uppskattningar ligger det rörliga genomsnittet bakom den linjära trenden, där fördröjningen ökar med m. Lagen är avståndet mellan modellen och uppskattningen i tidsdimensionen. På grund av fördröjningen underskattar det rörliga genomsnittet observationerna som medelvärdet ökar. Estimatorns förspänning är skillnaden vid en viss tidpunkt i modellens medelvärde och medelvärdet förutspått av det rörliga genomsnittet. Förspänningen när medelvärdet ökar är negativt. För ett minskande medelvärde är förspänningen positiv. Fördröjningen i tid och den bias som införs i uppskattningen är funktionerna i m. Ju större värdet av m. desto större är storleken på fördröjning och förspänning. För en kontinuerligt ökande serie med trend a. värdena för fördröjning och förspänning av estimatorn för medelvärdet ges i ekvationerna nedan. Exemplet kurvorna stämmer inte överens med dessa ekvationer eftersom exemplet modellen inte ständigt ökar, utan det börjar som en konstant, ändras till en trend och blir sedan konstant igen. Även kurvorna påverkas av bruset. Den glidande genomsnittliga prognosen för perioder i framtiden representeras genom att man ändrar kurvorna till höger. Fördröjningen och förskjutningen ökar proportionellt. Ekvationerna nedan anger fördröjningen och förspänningen av prognosperioder i framtiden jämfört med modellparametrarna. Återigen är dessa formler för en tidsserie med en konstant linjär trend. Vi borde inte bli förvånad över resultatet. Den glidande medelvärdesberäkaren baseras på antagandet om ett konstant medelvärde och exemplet har en linjär trend i medelvärdet under en del av studieperioden. Eftersom realtidsserier sällan exakt kommer att följa antagandena till en modell, bör vi vara beredda på sådana resultat. Vi kan också dra slutsatsen av att variationen i bruset har störst effekt för mindre m. Uppskattningen är mycket mer flyktig för det rörliga genomsnittsvärdet på 5 än det glidande medlet på 20. Vi har de motstridiga önskningarna att öka m för att minska effekten av variationer på grund av bullret och att minska m för att göra prognosen mer mottaglig för förändringar i medelvärdet. Felet är skillnaden mellan den faktiska data och det prognostiserade värdet. Om tidsserierna verkligen är ett konstant värde är det förväntade värdet av felet noll och variansen av felet består av en term som är en funktion av och en andra term som är brusets varians. Den första termen är medelvärdet av det medelvärde som uppskattas med ett urval av m-observationer, förutsatt att data kommer från en population med konstant medelvärde. Denna term minimeras genom att göra m så stor som möjligt. En stor m gör prognosen inte svarande mot en förändring i underliggande tidsserier. För att prognosen ska kunna reagera på förändringar, vill vi ha m så liten som möjligt (1), men detta ökar felvariationen. Praktisk prognos kräver ett mellanvärde. Prognoser med Excel Prognosen för prognoser implementerar de glidande medelformlerna. Exemplet nedan visar analysen som tillhandahålls av tillägget för provdata i kolumn B. De första 10 observationerna indexeras -9 till 0. Jämfört med tabellen ovan förskjuts periodindex med -10. De första tio observationerna ger startvärdena för uppskattningen och används för att beräkna det glidande medlet för period 0. MA (10) kolumnen (C) visar de beräknade glidande medelvärdena. Den rörliga genomsnittsparametern m är i cell C3. Fore (1) kolumnen (D) visar en prognos för en period framåt. Prognosintervallet ligger i cell D3. När prognosintervallet ändras till ett större antal flyttas numren i Fore-kolumnen nedåt. Err-kolumnen (E) visar skillnaden mellan observationen och prognosen. Till exempel är observationen vid tidpunkten 1 6. Det prognostiserade värdet som gjorts från det glidande medlet vid tidpunkten 0 är 11,1. Felet är då -5,1. Standardavvikelsen och genomsnittlig avvikelse (MAD) beräknas i cellerna E6 respektive E7.

No comments:

Post a Comment